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Abstract
Breath testing could provide a rational tool for radiation biodosimetry because radiation causes
distinct stress-producing molecular damage, notably an increased production of reactive
oxygen species. The resulting oxidative stress accelerates lipid peroxidation of polyunsaturated
fatty acids, liberating alkanes and alkane metabolites that are excreted in the breath as volatile
organic compounds (VOCs). Breath tests were performed before and after radiation therapy
over five days in 31 subjects receiving daily fractionated doses: 180–400 cGy d–1 standard
radiotherapy (n = 26), or 700–1200 cGy d–1 high-dose stereotactic body radiotherapy (n = 5).
Breath VOCs were assayed using comprehensive two-dimensional gas chromatography
time-of-flight mass spectrometry. Multiple Monte Carlo simulations identified approximately
50 VOCs as greater-than-chance biomarkers of radiation on all five days of the study. A
consistent subset of 15 VOCs was observed at all time points. A radiation response function
was built by combining these biomarkers and the resulting dose-effect curve was significantly
elevated at all exposures �1.8 Gy. Cross-validated binary algorithms identified radiation
exposures �1.8 Gy with 99% accuracy, and �5 Gy with 78% accuracy. In this proof of
principal study of breath VOCs, we built a preliminary radiation response function based on
15 VOCs that appears to identify exposure to localized doses of 1.8 Gy and higher. VOC
breath testing could provide a new tool for rapid and non-invasive radiation biodosimetry.

(Some figures may appear in colour only in the online journal)
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Introduction

A biodosimeter that measures tissue responses to ionizing
radiation has several potential applications. It could determine
the severity of exposure in victims of unplanned nuclear events
arising from accidents or terrorism, as well as in passengers
and crew of aircraft and spacecraft. Also, since the effects of
radiation on normal tissue vary widely between individuals
[1, 2], it might also permit more accurate titration of dosage
in patients undergoing radiotherapy (RT).

Breath testing offers a rational tool for radiation
biodosimetry because gamma irradiation of tissues causes
increased leakage of reactive oxygen species (ROS) from
mitochondria that specifically accelerate lipid peroxidation
of polyunsaturated fatty acids in cell membranes, liberating
alkanes and alkane metabolites that are excreted in the
breath as volatile organic compounds (VOCs) because of
their high vapor pressure at body temperature [3]. Radiation-
induced oxidative stress is mediated by changes in intracellular
metabolic oxidation/reduction (redox) reactions involving
ROS [4], because ionizing radiation generates hydroxyl
radicals, either directly by oxidation of water, or indirectly
by the formation of secondary ROS [5] which then cause
increased oxidative degradation of biological molecules [6].
Studies of irradiated food provide additional evidence for
this mechanism: radiation evokes production of a variety
of different VOCs consistent with oxidative stress products,
including alkanes and alkenes [7, 8], benzene derivatives, and
aldehydes [9, 10].

Ionizing radiation has been linked to changes in
biomarkers of oxidative stress in humans [11, 12], though
previous reports of the effects of radiation on alkane excretion
in breath are sparse. Arterbery et al reported an increased level
of ethane in breath in a patient receiving total body irradiation
[13], and Crohns et al observed a decreased level of pentane
in breath following the first day of RT for lung cancer [14].
Others have proposed nitric oxide in breath as a predictor of
radiation pneumonitis [15].

The main advantage of breath VOC biomarkers over
biomarkers in blood or other fluids is that breath testing is
non-invasive, painless, and safe [16, 17]. For example, gas
chromatography–mass spectrometry analysis of breath alkane
and furan compounds can detect tobacco smokers [18].

We report here a study of subjects undergoing RT
for the treatment of various cancers. We collected breath
VOCs onto sorbent traps with a breath collection apparatus
(BCA) and analyzed the samples using comprehensive
two-dimensional gas chromatography time-of-flight mass
spectrometry (GC × GC-TOF MS) in order to identify
biomarkers of radiation exposure and to determine their
potential value in radiation biodosimetry.

Materials and methods

Human subjects

Thirty-one subjects were studied; their characteristics are
shown in table 1. Subjects received either standard RT in daily
fractionated doses of 180–400 cGy over four consecutive days

(n = 26), or high-dose stereotactic body radiotherapy (SBRT)
of 700–1200 cGy over four or five consecutive days (n = 5).
The Institutional Review Boards at all clinical sites of the study
approved the research.

Breath VOC sample collection

Subjects provided a breath sample before each dose of
radiation therapy, and a second sample within 30 min of
the conclusion of treatment. The method has been described
[19] and the device for sample collection is shown in the left
panel of figure 1. In summary, a subject breathed normally
for 2.0 min through a disposable valved mouthpiece and a
bacterial filter into the breath reservoir of a portable BCA
(Menssana Research, Inc., Fort Lee, NJ 07024). VOCs in 1.0 L
alveolar breath and 1.0 L room air were captured onto separate
sorbent traps containing graphitized carbon black (Supelco,
Inc., Bellefonte, PA 16823).

Analysis of samples

VOCs captured on the sorbent traps were analyzed by
automated thermal desorption and GC × GC-TOF MS. A
Unity 2 thermal desorber (Markes International Inc., DE
19807, USA) was employed to purge water vapor from
the sorbent traps with helium, inject 2 ppm of internal
standard (1-bromo-4-fluoro-benzene (BFB) from Supelco,
Inc., Bellefonte, PA 16823), and then thermally desorb the
VOCs onto a cold trap for re-concentration. VOCs were
desorbed from the cold trap onto the head of the primary
column of a Pegasus 4D GC × GC-TOF MS system equipped
with an Agilent 6890 gas chromatograph and a LECO two-
stage cryogenic modulator and a secondary oven (LECO
Corp., St. Joseph, MI 49085). Two capillary columns were
connected in series and separated by the cryogenic modulator
so that the relatively non-polar primary column separated
VOCs according to their boiling point and the more polar
secondary column in the secondary oven separated VOCs
according to their polarity. VOCs eluting from the secondary
column were detected with TOF MS. Helium was used as the
carrier gas flowing at a corrected constant rate via automated
pressure ramp. We used multiple temperature ramps from 35
to 280 ◦C to separate the large number of VOCs detected
in breath and room air. The sensitivity of the system was
monitored using the internal standard BFB injected on each
sample tube prior to desorption. Figure 1 (right panel) depicts
a typical chromatogram of breath VOCs in a normal human
subject.

Data pretreatment

The GC × GC-TOF MS instrument data were first processed
using LECO’s ChromaTOF software for peak detection and
compound identification. VOCs were identified according to
their mass spectral signatures matched to a mass spectral
library (NIST 2.0, Gaithersburg, MD 20899–1070). The
manufacturer’s recommended parameters for ChromaTOF
were used to reduce the raw instrument data into a metabolite
peak list. After retention index filtering [20], all peak lists were
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Figure 1. Breath VOC collection and analysis. The BCA (left-hand panel) collects samples of volatile organic compounds (VOCs) in
alveolar breath and in air onto separate sorbent traps. The subject breathes normally for 2.0 min through a disposable valved mouthpiece.
The BCA then automatically switches over to collect a sample of room air VOCs on to a separate sorbent trap. Breath VOC analysis of
sample (right-hand panel) is performed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
Separation with non-polar and polar columns reveals around 2 000 different VOCs in a sample of human breath.

Table 1. Characteristics of subjects.

Age (yr) Mean daily dose (Gy) Mean total dose (Gy)
Cancer group n Mean (SD) Standard RT SBRT Standard RT SBRT

Breast 20 55.8 (11.6) 1.9 7.6
Prostate 7 63.0 (11.0) 1.8 7.0 7.1 21.0
Lung 4 67.8 (5.4) 11.0 46.0

RT = radiation therapy, SBRT = stereotactic body RT.

aligned using an improved version of DISCO software [21],
where the peaks with low quality were filtered and multiple
peak entries were merged using the default values specified
in DISCO, and the spectral similarity was calculated using
the method described in [22]. For each breath VOC, the value
of the alveolar gradient was determined as Vb/Ib–Va/Ia where
Vb = area under curve (AUC) of the chromatographic peak of
a VOC in breath, Ib = AUC of the internal standard (BFB)
peak in the same chromatogram, and Va and Ia denote the
corresponding values in the associated room air sample [19].

Identification of biomarkers of radiation exposure

Multiple Monte Carlo simulations were employed to identify
the breath VOCs that identified radiation exposure with greater
than random accuracy. The method has been previously
described [23]. In summary, the alveolar gradients of all breath
VOCs were compared before and after radiation and ranked as
candidate biomarkers according to their C-statistic values, i.e.
the AUC of the receiver operating characteristic (ROC) curve
[24]. The average random behavior of the alveolar gradients
of all breath VOCs was determined with multiple Monte Carlo
simulations by randomly assigning subjects to the before or
after radiation group, and performing 40 estimates of the
C-statistic value. Differences of the C-statistic values obtained
between the correct assignment and the random assignment
indicate the power of using breath VOCs to differentiate the
radiation exposure from the random [25, 26].

Dose-effect response

Breath VOCs identified as biomarkers of radiation with
greater than random accuracy were entered into a third order
polynomial regression to correlate the response function with
total dosage of radiation.

Binary dose response to radiation

All breath VOC data were randomly assigned to either a
training set or a test set. In the training set, multiple Monte
Carlo simulations were employed to identify the biomarkers
of radiation that distinguished between groups of subjects
receiving either <1.8 or �1.8 Gy with greater than random
accuracy. These VOCs were analyzed with weighted digital
analysis (WDA) and the resulting binary algorithm was
employed to predict dosage in the test set. The procedure was
repeated in groups of subjects receiving <5 or �5 Gy.

Results

Heatmaps of breath VOC responses to radiation

Figure 2 displays heatmaps of breath VOC response to
radiation and the number of subjects studied at each time
point. The 1000 breath VOCs with the greatest abundance
were selected for this display. The mean abundance of each
breath VOC in all subjects is compared to its baseline
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Figure 2. Heatmaps of breath VOC responses to radiation. Subjects received either standard radiotherapy over four consecutive days
(n = 26), or high-dose stereotactic body radiotherapy over four or five consecutive days (n = 5). The 1000 breath VOCs with the highest
abundance based on their alveolar gradient are displayed in order of chromatographic retention time like words on a page, i.e. from left to
right and from top to bottom in each panel. The change in mean abundance of each breath VOC in all subjects is shown. Binary changes are
shown: a yellow or a red cell respectively indicates increased or reduced mean abundance of a VOC compared to its baseline pre-radiation
level. These heatmaps demonstrate that radiation elicited major changes in the mean abundance of a wide variety of breath VOCs throughout
the course of the study. However, not all of these changes may have been statistically significant, and the Monte Carlo simulations in
subsequent figures identified those changes in the heatmap that were greater than could be accounted for by chance alone. IR = irradiation.
The number of included subjects is shown on each heatmap. No post-radiation heatmap is shown for day 5 since only two subjects were
studied.
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Figure 3. Identification of biomarkers of radiation with multiple Monte Carlo simulations. Day 1: baseline pre-radiation versus day 1
post-radiation (left-hand panel). Day 5: baseline pre-radiation versus final breath collection (right-hand panel). This figure displays the
number of breath VOCs as a function of their accuracy as biomarkers of radiation exposure. The criterion of a biomarker’s accuracy was the
AUC of its ROC curve, a value that ranges between 0.5 (no better than a random coin toss) and 1.0 (a perfect test with no false positive or
false negative results). In this figure, the number of VOCs starts at a high value when AUC = 0.5 because it includes all VOCs in the sample,
and then progressively declines as the AUC threshold increases. The ‘correct assignment’ curve shows the outcome when the subject was
correctly assigned to the appropriate group (pre-radiation or post-radiation). The ‘random assignment’ curve shows the mean outcome of 40
Monte Carlo simulations in which subjects were randomly assigned to the pre-radiation or post-radiation group. In both panels, the number
of VOCs in the mean random assignment curve fell to <1 when ROC curve AUC = 0.75. However, more than 50 breath VOCs in the correct
assignment group had ROC curve AUC values >0.75, demonstrating that these VOCs identified radiation exposure with greater than
random accuracy (>5 SD).

pre-radiation level. Changes were seen within 30 min of the
first exposure to radiation and persisted through day 5.

Identification of biomarkers of radiation with multiple Monte
Carlo simulations

Figure 3 displays outcomes of multiple Monte Carlo
simulations on day 1 (baseline pre-radiation versus day 1
post-radiation) and on day 5 (baseline pre-radiation versus
final breath collection). Similar results for pre-radiation and
post-radiation breath tests were also observed on day 2, 3 and
4, respectively. The simulations identified approximately 50
VOCs in all time points as better-than-chance biomarkers of
radiation employing a five sigma criterion.

A subset of 15 VOCs was observed at seven out of
eight time points. These VOCs mainly comprised methylated
and other derivatives of alkanes, alkenes, and benzene.
However, they could only be identified tentatively because
of the potential confounding factors that may compromise
identification of unknown compounds with the NIST library
[27]. Figure 4 displays the dose-effect response observed
when these 15 biomarker VOCs were entered into a third
order polynomial regression and the response function was
correlated with total dosage of radiation.

Figure 4. Dose-effect response of breath test to radiation. Radiation
response function (+/− standard error) versus dosage. The 15
biomarker VOCs shown in table 1 were converted to a radiation
response function by third order polynomial regression and the
response function was correlated with total dosage of radiation (Gy).
The elevation in response function compared to the pre-radiation
level was significant at all exposures of 1.8 Gy and greater.

Binary dose response to radiation

Figure 5 displays the binary dose-effect training sets and test
sets observed at cutoff points of 1.8 and 5 Gy
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Figure 5. Binary dose-effect response Upper panels: training set and test set with cutoff value of 1.8 Gy. Lower panels: training set and test
set with cutoff value of 5 Gy. Breath VOC data were randomly assigned to either a training set or a test set, and multiple Monte Carlo
simulations were employed in the training set to identify the biomarkers that identified radiation exposure in excess of a specific cutoff
value. More than 50 VOC biomarkers distinguished between exposures of <1.8 Gy compared to �1.8 Gy with greater than random
accuracy (>5 SD). 30 VOC biomarkers similarly distinguished between exposures of <5 Gy compared to �5 Gy. These VOCs were
analyzed with weighted digital analysis (WDA) and the resulting binary algorithms were employed to predict dosage in the test sets. The
cross-validated prediction accuracy of the binary dose-effect response was 99% at 1.8 Gy and 78% at 5 Gy.

Effect of site of radiation

The radiation response data plotted in figure 4 was stratified
by diagnosis and by dosage, and there were no statistically
significant differences between subjects with cancer of breast,
prostate and lung.

Discussion

The main finding of this study was that therapeutic radiation
elicited major changes in the abundance of breath VOCs.
These changes were highly significant: compared to their
baseline pre-radiation levels, the abundance of 50 breath VOCs
increased or decreased by more than five standard deviations
in excess of variation arising by chance, corresponding to a
p-value of less than 3 × 10−7.

The significantly altered breath VOCs included a stable
subset of 15 compounds mainly comprising methylated and
other derivatives of alkanes, alkenes, and benzene. The
chemical structures of these VOCs could only be identified
tentatively because of the inherent limitations of identifying
unknown VOCs with the NIST library. Stein has identified the
major factors affecting confidence in the identification process
of mass spectra with the NIST library as prior probability,
risk of false negative results, risk of false positive results, and
the problem of ‘unknown unknowns’ [27]. These findings are
consistent with previous reports of the effects of oxidative
stress in which peroxidation of lipids generates alkanes and
methylated alkanes that are excreted in the breath [3, 16], and
with the VOCs reported in irradiated food products [7–10]. A
dose-effect curve employing these 15 VOCs in a multivariate
algorithm demonstrated significant responses to radiation at
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doses of 1.8 Gy and higher. The cutoff points of 1.8 and
5 Gy were selected because of their relevance to screening
and triage: whole-body acute exposure greater than 2 Gy is
associated with increased risk of hematopoietic syndrome,
while doses greater than 5 Gy may be lethal [28].

We found no statistically significant differences between
different diagnostic groups at any dosage; however, the
comparatively small number of subjects with prostate and lung
cancer provided insufficient statistical power to differentiate
on diagnosis.

In addition, cross-validated binary algorithms identified
radiation exposures �1.8 Gy with 99% accuracy, and �5 Gy
with 78% accuracy. The decline in accuracy at �5 Gy may
have been induced by a statistical effect of the comparatively
small number of subjects in this group.

These findings are consistent with previous reports of
radiation-induced changes in biomarkers of oxidative stress
[11, 12]; also, the early global decline in breath VOCs
(figure 2) was consistent with the previously reported fall
in breath pentane levels following the first day of RT for
lung cancer [14]. The fluctuating pattern of increasing and
decreasing breath VOCs observed during the five-day course of
radiation is not yet understood and merits future investigation.
These changes may have arisen from a complex interaction of
acute and chronic inflammatory responses to radiation injury
resulting in fluctuating levels of oxidative stress and altered
release of biomarkers of inflammation. However, this figure
should be interpreted with caution because of an intrinsic
limitation of heatmaps: even when they display visually
striking changes in the evolution of a data set, not all of the
apparent changes may be statistically significant.

The relevance of these findings should be interpreted
with caution because of the selection of subjects with acute
medical concerns and the fact that the effects of partial-
body exposure employed in therapeutic radiation may differ
from the effects of whole-body radiation resulting from a
nuclear event or irradiation in aircraft and spacecraft. Also,
a number of potential confounding factors may have affected
responses to radiation in members of the study population,
including differences in age, gender, type of cancer, stage
of disease, preceding treatment with antioxidants or other
drugs, and the effects of dosage schedule (e.g. short-term
high exposure versus longer-term lower dosage). All of these
factors merit future investigation, but they were beyond the
scope of this pilot study which was targeted to establishing
proof of principle. It is obviously desirable to follow this
study with both animal studies and research of human subjects
undergoing total body irradiation.

These findings suggest future areas of research that were
not addressed in this report. For example, it is not yet known
if different results might be observed in subjects receiving
high exposure for a short period compared to those receiving
low exposure for a long period. This merits future studies
in animals since it is not feasible to perform such studies in
humans.

Large populations could be exposed to acute radiation
injury in the event of an unplanned nuclear event resulting from
an accident or from military or terrorist activity [29]. Early

responders would require a rapid triage strategy to identify
those in urgent need of acute medical care and determine
their exposure using some form of radiation biodosimetry
[30, 31]. Different techniques have been proposed as candidate
biomarkers of radiation exposure, including detection of
induced chromosomal abnormalities in peripheral blood
lymphocytes [32], electron paramagnetic resonance in teeth
[33], as well as changes in the proteome [34] and genome [35].

In this study, breath VOCs provided a preliminary set of
accurate biomarkers of radiation exposure in humans. A breath
test for radiation biodosimetry has several advantages over the
tests requiring blood or urine: they are rapid, non-invasive, and
completely safe. In addition, this technology could be applied
in a cost-effective point-of-care platform that does not require
operators with laboratory expertise, similar to the point-of-care
breath test for active pulmonary tuberculosis that employs a
mobile gas chromatograph [36].

However, further studies are required to validate these
findings in humans and in animals, and also to determine
the time-course of breath VOC responses to radiation. In
addition, it will require further investment in development
of instruments and methods to migrate this technology to a
point-of-care platform that could be employed by the first-
responders. We conclude that a breath test detected a set of
volatile biomarkers of radiation in human subjects receiving
radiation therapy, and that this test could potentially be
employed to estimate exposure to radiation in other settings.
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