Point-of-care breath test for biomarkers of active pulmonary tuberculosis

Michael Phillips a,b, *, Victoria Basa-Dalay c, Jaime Blais a, Graham Bothamley d, Anirudh Chaturvedi a, Kinjal D. Modi h, Mauli Pandya a, Maria Piedad R. Natividade e, Urvish Patel d, Nagsen N. Ramraje f, Peter Schmitt g, Zarir F. Udwadia h

a Menssana Research Inc., Breath Research Laboratory, EDC III, 211 Warren Street, Newark, NJ 07103, USA
b Department of Medicine, New York Medical College, Valhalla, NY, USA
c Center for Tuberculosis Research, Angelo King Medical Research Center, De La Salle Health Sciences Institute, Cavite, Philippines
d Department of Respiratory Medicine, Homerton University Hospital NHS Foundation Trust, London E9 6SR, UK
e Center for Respiratory Medicine, The University of Santo Tomas Hospital (USTH), Espana Boulevard, Manila 1008, Philippines
f Sir J.J. Group of Hospitals, Byculla, Mumbai 400008, India
g Schmitt & Associates, 211 Warren St, Newark, NJ 07103, USA
h J.P. Hinduja National Hospital and Research Center, Veer Savarkar Marg, Mahim, Mumbai 400016, India

ARTICLE INFO

Article history:
Received 15 February 2012
Received in revised form 3 April 2012
Accepted 9 April 2012

Keywords:
Active pulmonary tuberculosis
Breath
Volatile organic compounds
Screening
Biomarkers

SUMMARY

Rationale: Volatile organic compounds (VOCs) in breath provide biomarkers of tuberculosis (TB) because Mycobacterium tuberculosis manufactures VOC metabolites that are detectable in the breath of infected patients.

Objectives: We evaluated breath VOC biomarkers in subjects with active pulmonary TB, using an internet-linked rapid point-of-care breath test.

Methods: 279 subjects were studied at four centers in three countries, Philippines, UK, and India, and data was analyzed from 251 (130 active pulmonary TB, 121 controls). A point-of-care system collected and concentrated breath and air VOCs, and analyzed them with automated thermal desorption, gas chromatography, and surface acoustic wave detection. A breath test was completed in 6 min. Chromatograms were converted to a series of Kovats Index (KI) windows, and biomarkers of active pulmonary TB were identified by Monte Carlo analysis of KI window alveolar gradients (abundance in breath minus abundance in room air).

Measurements and main results: Multiple Monte Carlo simulations identified eight KI windows as biomarkers with better than random performance. Four KI windows corresponded with KI values of VOCs previously identified as biomarkers of pulmonary TB and metabolic products of M. tuberculosis, principally derivatives of naphthalene, benzene and alkanes. A multivariate predictive algorithm identified active pulmonary TB with 80% accuracy (area under curve of receiver operating characteristic curve), sensitivity = 71.2%, and specificity = 72%. Accuracy increased to 84% in age-matched subgroups. In a population with 5% prevalence, the breath test would identify active pulmonary TB with 98% negative predictive value and 13% positive predictive value.

Conclusions: A six-minute point-of-care breath test for volatile biomarkers accurately identified subjects with active pulmonary TB.

© 2012 Elsevier Ltd. All rights reserved.

An estimated 2 billion people, one third of the world’s population, are infected with Mycobacterium tuberculosis. Tuberculosis (TB) remains a leading cause of death from infectious disease, with an estimated 9.4 million new cases throughout the world every year. Sputum smear microscopy remains the mainstay of diagnosis in resource-poor countries with a high TB burden, but the low sensitivity of this test results in patients with smear-negative but culture-positive pulmonary TB passing undetected through the health care system. The high incidence of smear-negative TB in patients infected with HIV has further highlighted the clinical need.
for tests for TB that are not only sensitive and specific, but also rapid, non-invasive, and cost-effective. A breath test for volatile organic compounds (VOCs) could provide a rational test for active pulmonary TB because the causative organism, *M. tuberculosis*, manufactures VOC metabolites *in vitro*, and a number of these VOCs have been detected in the breath as apparent biomarkers of infection. Breath biomarkers identified active pulmonary tuberculosis (TB) with 85% accuracy in a multicenter international study employing a breath collection apparatus (BCA) and VOC analysis with automated thermal desorption, gas chromatography and mass spectrometry (ATD-GC-MS). Breath testing for active pulmonary TB appears rational and feasible, but clinical application has been limited by the cost of ATD-GC-MS and the requirement for highly trained technical staff.

However, recent advances in sensitive and cost-effective analytical instruments have enabled breath VOC microanalysis at a clinical point-of-care without the requirement for specialized laboratory resources. We report here an analytical system that was developed for rapid point-of-care collection and analysis of breath VOCs, and the evaluation of this system in a multicenter international study of breath VOC biomarkers in patients with active pulmonary TB.

1. Materials and methods

1.1. Clinical sites

Four tuberculosis treatment centers participated in the study, in the Philippines (University of Santo-Tomas, Manila, and De La Salle Health Sciences Institute, Cavite), UK (Homerton University Hospital, London) and India (Hinduja Hospital, Mumbai & Sir JJ Group of Hospitals, Mumbai).

1.2. IRB approval and informed consent

An Institutional Review Board (IRB) at each collaborating site approved the research. All subjects gave their signed informed consent to participate. Assent from adolescent subjects and consent from a parent or legal guardian was obtained for subjects 13–16 yr in England or younger than 18 yr at sites in other countries.

1.3. Human subjects

279 subjects were recruited according to the following criteria:

1.3.1. Control group — inclusion criteria

1. Subject is older than 13 years of age
2. Subject is undergoing screening for pulmonary TB without clinical evidence of active TB

1.3.2. Exclusion criteria

1. Clinical suspicion of pulmonary TB based on: symptoms and signs e.g. cough, sputum production, night sweats, weight loss or hemoptysis
 a. OR: history of known recent exposure to infection
 b. OR: chest X-ray abnormalities consistent with active pulmonary TB
2. Positive sputum smear test or positive sputum culture.

1.3.3. Disease group — inclusion criteria

1. Subject is older than 13 years of age
2. Clinical suspicion of pulmonary TB based on: symptoms and signs e.g. cough, sputum production, night sweats, weight loss or hemoptysis
 a. OR: history of known recent exposure to infection
 b. OR: chest X-ray abnormalities
 c. OR: positive sputum smear consistent with active pulmonary TB
 d. OR: sputum culture results positive or pending

1.3.4. Exclusion criteria

1. Subject is currently taking anti-TB therapy or has received more than 7 days of anti-TB therapy in the past six months

1.4. Point-of-care breath test

The BreathLink system developed for this study comprised three main components:

1. Breath VOC sample collector and concentrator (BCA): The front end of the system, the BCA method for collection and concentration of alveolar breath VOC samples has been described. In summary, a subject wore a nose-clip and respired normally for 2.0 min, inspiring room air from a valved mouthpiece, and expiring into a breast reservoir through with a bacterial filter. The valve mouthpiece and the bacterial filter were disposed after use. A one-way outlet valve in the mouthpiece prevented backflow of breath into the mouth, and the 6-micron bacterial filter blocked transmission of Mycobacteria or other microorganisms. The mouthpiece and filter present low resistance to expiration, so that subjects could present low resistance to expiration, so that subjects could donate breath samples without effort or discomfort. Alveolar breath VOCs were pumped from the breath reservoir through a sorbent trap where they were captured and concentrated. VOCs in a similar volume of room air were separately collected and concentrated in the same fashion.

2. Breath VOC analyzer: An analyzer was developed for the BreathLink system, employing a portable gas chromatograph coupled to a surface acoustic wave (SAW) detector. The VOC sample was thermally desorbed from the sorbent trap in a stream of helium carrier gas and separated on a GC column with thermal ramping. VOCs were detected with a single non-functionalized SAW solid-state mass-sensitive detector with picomolar sensitivity and universal selectivity: the principles have been reported. The analyzer was calibrated daily with an external standard, a mixture of C6 to C22 n-alkanes (Restek Corporation, Bellefonte, PA 16823, USA). Each breath test comprising collection and analysis of separate samples of breath and room air was completed within 6 min.

3. Control software: Custom software was developed for the BreathLink system and installed on a secure computer at the point-of-care where it performed the following functions:
 a. Control of instrument functions. The software automatically controlled breath and air sample collections with the BCA, and analysis with the breath VOC analyzer.
 b. Electronic Case Report Form (eCRF): Collaborators at clinical sites entered subject data into an electronic case report form (eCRF) with a unique identification number. Subject names were not recorded, except in a separate confidential log maintained at the clinical site. A menu-driven program prevented collection of a breath sample unless all inclusion and exclusion criteria were fulfilled. The eCRF comprised demographic data and clinical information including chest X-ray reports and results of sputum smear microscopy and culture.
 c. File storage, encryption, and transmission: Files containing de-identified chromatographic raw data and eCRFs were stored locally on the computer, then encrypted and transmitted via the internet to a server at the Menssana Research Institute.
Breath Research laboratory in Newark, NJ, USA, where they were decrypted and stored for analysis. An industry standard hypertext transfer protocol secure (https) connection ensured data security.

Instrument detection limit is defined as the analyte concentration that is required to produce a signal greater than three times the standard deviation of the noise level\(^9\) and was determined for tridecane (Sigma Aldrich, St. Louis, MO 63103) serially diluted in methanol.

1.5. Analysis of data

In summary, the retention time of each chromatographic peak was normalized according to its Kovats Index (KI) (retention time relative to known n-alkane standards)\(^{10,11}\) and the chromatogram was converted into a series of data points by segmenting it into a series of 100 KI windows. The alveolar gradient of each KI window (i.e. abundance in alveolar breath minus abundance in ambient room air) was determined as: alveolar gradient = \(V_b/I_a - V_a/I_b\) where \(V_a\) = integrated abundance of VOCs in breath observed with SAW detector, and \(I_a\) = area under the curve (AUC) of the chromatographic peak associated with the external control standard. \(V_b\) and \(I_b\) were corresponding values observed in the associated sample of ambient room air. The alveolar gradient varies with rate of synthesis of a VOC minus its rate of clearance, so that a positive value indicates that a VOC was synthesized at a greater rate than it was cleared from the body, and vice versa for a negative value.\(^{12,13}\)

1.6. Identification of biomarkers and construction of predictive algorithm

Multiple Monte Carlo simulations were employed to identify the KI windows that identified disease with greater than random accuracy. The method has been described.\(^7\) In summary, the alveolar gradients of all KI windows were compared in the disease and control groups and ranked as candidate biomarkers according to their C-statistic values i.e. the AUC of the receiver operating characteristic (ROC) curve.\(^{14}\) The average random behavior of each chromatographic KI window was determined with multiple Monte Carlo simulations by randomly assigning subjects to the disease or control group, and performing 40 estimates of the C-statistic value. Differences between the C-statistic values obtained with correct diagnosis and random diagnosis identified the KI windows that were true biomarkers, because they identified the disease group with better than random accuracy.\(^{15,16}\) The KI windows identified as biomarkers of disease were employed to construct a multivariate predictive algorithm with weighted digital analysis (WDA).\(^{17}\)

1.7. Comparison of KI windows to previously reported biomarkers

KI window values were compared to KI values of previously reported VOC biomarkers of active pulmonary TB\(^5,7\) employing a database maintained by the National Institute of Standards and Technology (NIST Standard Reference Database Number 69).\(^{18}\) Also, pure samples of benzene, 1,3,5-trimethyl- and toluene were analyzed with the BreathScanner GC-SAW.

2. Results

2.1. Human subjects

279 subjects fulfilled recruitment criteria and 251 were entered into data analysis. Characteristics and exclusions are shown in Table 1. No adverse effects of the breath test were reported. Instrument detection limit requirements were fulfilled by 0.1 \(\mu\)L of 0.1 ppt tridecane solution, which was equivalent to less than 10\(^{-12}\) mol tridecane in a breath sample.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of human subjects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>No. recruited</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Cavit</td>
<td>47</td>
</tr>
<tr>
<td>London</td>
<td>17</td>
</tr>
<tr>
<td>Manila</td>
<td>52</td>
</tr>
<tr>
<td>Mumbai</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
</tr>
<tr>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Disease group</td>
<td>Technical quality of breath test</td>
</tr>
<tr>
<td>Site</td>
<td>No. recruited</td>
</tr>
<tr>
<td>Cavit</td>
<td>30</td>
</tr>
<tr>
<td>London</td>
<td>4</td>
</tr>
<tr>
<td>Manila</td>
<td>60</td>
</tr>
<tr>
<td>Mumbai</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>141</td>
</tr>
<tr>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>Controls</td>
</tr>
<tr>
<td>Mean</td>
<td>33.31</td>
</tr>
<tr>
<td>SD</td>
<td>13.46</td>
</tr>
</tbody>
</table>

\(p < 0.0001,\) 2-tailed \(t\)-test. All subjects with technically unsatisfactory breath test samples were excluded from analysis. Subjects who were initially recruited to the control group but were found to have a positive sputum culture or a positive sputum smear, or a chest X-ray consistent with active pulmonary TB were transferred to the disease group. Inclusions in the disease group. **Subjects were included as positive for active pulmonary TB and entered into the analysis of data if they had a positive sputum culture and/or positive sputum smear microscopy and/or chest X-ray consistent with active pulmonary TB.
2.2. Identification of KI window biomarkers

Multiple Monte Carlo simulations identified eight chromatographic KI windows as biomarkers with better than random performance (Figure 1a). Figure 2 displays KI values of these biomarkers in controls and in subjects with pulmonary TB in a heatmap of chromatographic alveolar gradients. Four KI window biomarkers corresponded with KI values of VOCs previously reported as biomarkers of pulmonary TB and in vitro metabolites of *M. tuberculosis* (Table 2).

2.2.1. Predictive algorithm and ROC curve

The WDA multivariate predictive algorithm identified active pulmonary TB with 80% accuracy. Cumulative accuracy of the algorithm and ROC curve are shown in Figure 1b and c.

2.2.2. Positive and negative predictive values (PPV and NPV)

Figure 1d displays the expected variation of PPV with NPV of the test in a high-burden setting with 5% prevalence of active pulmonary TB, and Figure 3 displays the expected outcome when a combination of sensitivity and specificity values was selected to result in NPV = 98%.

2.3. Effect of age on accuracy of predictive algorithm

Patient subsets were selected in the age range 30–65 yr (controls *n* = 45, mean = 43.89 yr, SD = 10.9, disease group *n* = 72, mean = 46.1 yr, SD = 10.14, 2-tailed *t*-test *p* = 0.26, NS). When the same predictive algorithm was applied to these subsets, AUC of ROC curve = 0.84.

3. Discussion

The main finding of this study was that a model based on a point-of-care breath test for volatile biomarkers identified active pulmonary TB with 80% accuracy overall, increasing to 84% accuracy in age-matched subsets. This was consistent with our previous...
report of a laboratory-based assay for breath biomarkers that identified active pulmonary TB with 85% accuracy. Four KI windows corresponded with KI values of VOCs previously identified as breath biomarkers of pulmonary TB and metabolic products of *M. tuberculosis*, principally derivatives of naphthalene, benzene and alkanes. This correspondence provides presumptive evidence from two independent clinical studies that these breath VOCs are biomarkers of active pulmonary TB. This study also provided proof of concept that breath biomarkers identified in the laboratory with advanced analytical instruments may be successfully identified with a point-of-care system employing a faster and less expensive instrument platform. In practice, the rapid point-of-care breath test combined with internet transmission of clinical and chromatographic data was convenient and effective. Clinical sites in countries widely separated by geography were able to complete a subject’s breath test in a standardized fashion in 6 min, and pool their data promptly. The biological origins of breath VOC biomarkers of active pulmonary TB were consistent with metabolic products derived from the infective organism, the host, or both. *M. tuberculosis* manufactures a spectrum of VOCs *in vitro*, including methylated derivatives of n-alkanes, naphthalene and benzene. The metabolic source of these products and their biological significance are unknown. Infection of the host with TB causes increased oxidative stress, which can result in increased excretion of n-alkanes and their derivatives in the breath. The heatmap (Figure 2) demonstrates that different VOCs in the biomarker KI windows were either increased or decreased in abundance in active pulmonary TB.

Figure 2. Heatmap of chromatographic KI windows. The heatmap displays KI windows in controls (upper panel) and in subjects with active pulmonary TB (lower panel). The horizontal axis indicates the value of each KI window. The color of each KI window varied on a scale from one to ten (scale shown at right). The scale was calculated for each KI window by dividing the range between the highest and lowest observed value of the alveolar gradient into ten equal parts. Vertical lines with adjacent numbered arrows indicate eight KI windows that were identified as biomarkers of active pulmonary TB because they were predominantly darker in the controls than in active pulmonary TB, or vice versa, and multiple Monte Carlo simulations identified these differences in alveolar gradient as greater than predicted by chance alone. The KI windows indicated with green arrows corresponded with the KI values of VOCs previously reported as biomarkers of active pulmonary TB and metabolic products of *Mycobacterium tuberculosis* (see Table 2).

Table 2

<table>
<thead>
<tr>
<th>Biomarker number</th>
<th>KI window</th>
<th>Breath biomarker VOCs</th>
<th>Mycobacterium tuberculosis in vitro VOCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>965–1030</td>
<td>camphene; 1-beta-pinene; benzene, 1,3,5-trimethyl-naphthalene; 1-methyl-tridecane; 1-octanol, 2-butyl; dodecane, 4-methyl-heptane, 2,2,4,6,6-pentamethyl-naphthalene, 1-methyl-</td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td>1243–1313</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The point-of-care breath test identified a group of KI windows as biomarkers of active pulmonary TB (Figure 2). Four of these KI windows corresponded with the KI values of VOCs previously identified as breath biomarkers of active pulmonary TB, or VOC products of *M. tuberculosis in vitro*. These KI windows corresponded with the KI windows indicated by green arrows 1, 2, 3 and 4 in the heatmap (Figure 2). Based on their chromatographic retention times, this correspondence provides presumptive evidence, though not definitive proof, that the listed VOCs are similar to those identified in the heatmap. KI values were obtained from the NIST Standard Reference Database Number 69. GC-SAW analysis of pure samples of benzene, 1,3,5-trimethyl- and toluene yielded similar KI values. The presence of more than one candidate VOC in a single KI window may have arisen from their coelution in a single peak in the gas chromatogram. The VOC biomarkers listed above are similar, but not identical to those identified in previous reports. These differences may have arisen in part from differences in experimental design, diagnostic criteria and assay methodology. In particular, the assay parameters and instrumentation employed with the rapid point-of-care ATD-GC-SAW using a short 1 M column would be expected to yield different selectivity and sensitivity values for breath VOCs compared to the much slower assays with laboratory-based ATD-GC-MS using a 30 M column.

Decreased abundance of breath VOCs may have resulted from *M. tuberculosis* catabolism human metabolic products as nutrients. This hypothesis is consistent with mycobacterial catabolism of other host-derived nutrients including carbohydrates, amino acids, phosphate, and cholesterol, as well as with reports that alkanes, alkane derivatives or benzene derivatives can all sustain mycobacterial growth as nutritional substrates.

The potential clinical utility of the point-of-care breath test for active pulmonary TB may be estimated from its positive and negative predictive values, which will vary with the prevalence of disease in the study population. Figure 3 displays the expected values of PPV and NPV in a population with a high prevalence of active pulmonary TB. In the example shown in Figure 3, an NPV of 98% was associated with a PPV of 13%. When the NPV was increased to 99%, the PPV declined to 10.1%. These findings illustrate a conundrum that public health physicians frequently encounter when planning to screen a large population for a disease: PPV increases as NPV decreases, and vice versa. The choice of a test cutoff point affects costs as well as patient population for a disease: PPV increases as NPV decreases, and vice versa. The choice of a test cutoff point affects costs as well as patient population for a disease: PPV increases as NPV decreases, and vice versa. The choice of a test cutoff point affects costs as well as patient population for a disease: PPV increases as NPV decreases, and vice versa.

Figure 3. Predicted outcome of breath test for active pulmonary TB: A specified target value of NPV or PPV may be achieved by selecting a cutoff point on the ROC curve (Figure 1) with an appropriate combination of sensitivity and specificity. In this example, breath testing could achieve a desired target value of NPV – 98% in a population of 10,000 people with a high (5%) prevalence of active pulmonary TB by selecting a cutoff point on the ROC curve where sensitivity = 71% and specificity = 75%.

illustrated by considering a hypothetical Biomarker X that is 100% accurate. In a clinical study, all subjects with disease will test positive for Biomarker X. However, an imperfect gold standard will generate some false-negatives, so the positive test results from Biomarker X in these subjects will be scored as false-positives, even though they were correct in reality. Similarly, false-positive results with the imperfect gold standard will be scored as false-negatives for Biomarker X. Consequently, the observed total number of false-positives and false-negatives will be the same for both the imperfect gold standard and for Biomarker X, so that the observed accuracy of Biomarker X will underestimate its true value. Consequently, the 80% accuracy of the breath test for active pulmonary TB observed in this study may have been an underestimate of its true value.

We conclude that this is the first report of a rapid point-of-care breath test for VOCs exhaled in picomolar concentrations, and that this test detected volatile biomarkers of active pulmonary TB consistent with biomarkers previously reported using laboratory-based instrumentation. The point-of-care breath test was rapid, accurate, and cost-effective, and could potentially provide a clinically valuable new tool for detection of active pulmonary TB.

Author’s contributions

Michael Phillips and Jaime Blais designed and supervised the study and drafted the manuscript. Anirudh Chaturvedi and Urvish Patel constructed and maintained the BreathLink systems. Anirudh Chaturvedi, Urvish Patel & Mauli Pandya performed quality control of the chromatograms and clinical data. Peter Schmitt and Anirudh Chaturvedi developed the software for the BreathLink system. Peter Schmitt analyzed the data statistically. Victoria Basa-Dalay, Graham Bothamley, Kinjal D. Modi, Maria Piedad R, Natividad Nagsen N Ramraj and Zarif F Udwadia collected data for the study. All authors reviewed the manuscript and participated in its revisions.

Funding: This study was funded by Mensanna Research, Inc. United States Air Force Contract #FA20047-09-P-0803 partially supported the costs of instrumentation.

Competing interests: None declared.

Ethical approval: Ethical approval was obtained from IRBs at all sites.

References